PREDIKSI KEBANGKRUTAN PERUSAHAAN MENGGUNAKAN ALGORITMA C4.5 BERBASIS FORWARD SELECTION
نویسندگان
چکیده
منابع مشابه
Sistem Informasi Pengarsipan Menggunakan Algoritma Levensthein String pada Kecamatan Seberang Ulu II
Archival information systems in government agency is one of the most used applications for daily acitivities. One feature in application management information document is searching. This feature serves to search for documents from a collection of available information based on keywords entered by the user. But some researches on a search engine (searching) concluded that the average user error...
متن کاملPengaruh Perangkat Server Terhadap Kualitas Pengontrolan Jarak Jauh Melalui Internet
Internet sangat membantu dalam memperbaiki kualitas kehidupan manusia. Hampir semua bidang kehidupan manusia dapat diakses menggunakan internet. Manusia terbantu dengan adanya internet yang menyediakan segala macam informasi yang dibutuhkan. Seiring dengan perkembangan infrastuktur jaringan internet maka pengontrolan jarak jauh mulai berubah menggunakan media internet. Pada penelitian ini digun...
متن کاملForward selection of explanatory variables.
This paper proposes a new way of using forward selection of explanatory variables in regression or canonical redundancy analysis. The classical forward selection method presents two problems: a highly inflated Type I error and an overestimation of the amount of explained variance. Correcting these problems will greatly improve the performance of this very useful method in ecological modeling. T...
متن کاملInterleaving Forward Backward Feature Selection
Selecting appropriate features has become a key task when dealing with high-dimensional data. We present a new algorithm designed to find an optimal solution for classification tasks. Our approach combines forward selection, backward elimination and exhaustive search. We demonstrate its capabilities and limits using artificial and real world data sets. Regarding artificial data sets interleavin...
متن کاملForward Semi-supervised Feature Selection
Traditionally, feature selection methods work directly on labeled examples. However, the availability of labeled examples cannot be taken for granted for many real world applications, such as medical diagnosis, forensic science, fraud detection, etc, where labeled examples are hard to find. This practical problem calls the need for “semi-supervised feature selection” to choose the optimal set o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ILKOM Jurnal Ilmiah
سال: 2017
ISSN: 2548-7779,2087-1716
DOI: 10.33096/ilkom.v9i2.97.173-180